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Immobilization of Soluble Metal Complexes with a Scheme 1
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Despite much recent interest in microporous organic solids
having zeolitic guest-binding propertiétheir catalytic activities
still remain a subject of challende.We have recently shown
that an anthracene bisresorcinol derivatiVe(apohost) as a
hydrogen-bonded polycrystalline solid catalyzes the Bidlsler?
and related ene reactiofsThis prompted us to move to metalated NMR) evidence for the exhaustive H/Ti excharfgeupled with
hosts, since metal ions play essential roles in organic synthesesthe stoichiometry ofl:Ti = 1:2, i.e., O:Ti= 2:15 indicates that
In the present work, we tried to convert the hydrogen-bonded deprotonated tetraanionic species of the htfs)) @re extensively
network in apohost (structure?2 in Scheme 1@®- - -@ = OH--- networked via G-Ti—O bridges. This is illustrated by structure
OH) into a metal-coordination networl®¢ - -@ = O~ —M""— 2 (®- - -@ = O —("PrO)Ti(Cl)—O"), although the actual network
O") by allowing the former to react with a soluble Lewis acid would likely be more random. Such a network may generate
complex having labile ligands. We report here that this simple coordinatively unsaturated metal centers. Ti-host, in fact, binds
procedure affords microporous metalrganic amorphous pow- 4 mol of polar guests (i.e., in a metal:guest ratio of 12)ch as
ders, which exhibit remarkable activities and advantages as solidethyl acetate, ethyl acrylate, and acrolein. In the resulting adduct

1+ 2[(PrO),TiCl,] —
1*-2[('PrO)TiCl] + 2PrOH+ 2HCI (1)

Lewis acid catalysts.

Treatment of host with (PrO)TiCl, affords a highly insoluble
orange-colored amorphous solid (Ti-host hereafter) formulated
as 1*-2[(PrO)TiCl] (eq 1)*° Spectral (IR and3C CPMAS
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Wauest, J. DJ. Am. Chem. Sod.997 119 2737-2738. (c) Yaghi, O. M,;
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(3) Sawaki, T.; Endo, K.; Kobayashi, K.; Hayashida, O.; AoyamaBill.
Chem. Soc. Jprl997, 70, 3075-3079.

(4) A suspension of apohostin a benzene or 1,3-cyclohexadiene solution
of ('PrO)TiCl, (Ti/1 = 2 or 4) was stirred under nitrogen at room temperature
for 24 h. The solid, which had turned reddish-brown, was collected, washed,
and dried in vacuo at 100C for 12 h. The orange powder thus obtained
showed a broad reflectance extending irt600 nm, exhibited no XRPD,
and was soluble in none of apolar organic solvents. All possible operations
were carried out in a glovebox. Anal. Found: C, 56.48; H, 4.43; Cl, 9.79; Ti
(X-ray fluorescence), 14.5. Calcd fogEls0sCl,Ti, (14-2[(PrO)TiCl]): C,
56.92; H, 4.18; CI, 10.50; Ti, 14.2. Treatment of a THF solution of Host
with (PrO)TiCl; affords solid materials which have incomplete H/Ti exchange

and are catalytically less active than Ti-host prepared under the present

heterogeneous conditions.

(5) Ti-host, Al-host, and their adducts are readily hydrolyzed to liberate
soluble organic components (hdkt2-propanol, and guest) and metal ion,
which were analyzed bjH NMR (in DMSO-ds) and atomic absorption (in 2
N H,SQ,), respectively, to confirm the stoichiometries indicated.
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14=-2[(PrO)TiCl]-4(CHsCO,CH,CHj),® ethyl acetate guests ex-
hibit characteristic complexation-induced shiftsiig-o by 56
cm ! (from 1745 to 1689) and idc (C=0O) by 10 ppm (from
170 to 180). Desorption of the guests occurs readily even at room
temperature and regenerates guest-free Titfose[(PrO)TiCl].5

The use of AI(CH); in place of {PrO}TiCl, affords an
analogous Al-host* -2(AICH3),>" having again a 1:21(to metal)
stoichiometry. It binds~6 mol of ethyl acetate. This results in
spectral changes not only for the gueAt¢—o = 58 cn1t and
Adc = 14 ppm) but also for the metal. THéAI MAS NMR
signals for Al-host are weak and broad (Figure 1a). Its adduct
147-2(AICH3)-6(CH;CO,CH,CHs) shows much sharper reso-
nances of higher intensity preferentially &0 ppm (1b) and
regenerates the guest-off spectrum upon desorption of the guest
(1c). Such a change in spectra suggests that the aluminum centers
of low symmetry in guest-free Al-host become more symmetric
in a hexacoordinated octahedral geometry upon guest bifding.
Combined evidence from the metal:guest ratio, shiftgin and
oc for the guest, guest-sensitive change in the metal (Al)
coordination geometry, and interconvertible guest-on/guest-off
spectra{®C and?’Al) leave almost no doubt that the polar guests
are bound to each metal center via coordinatiosrCE--metal).

(6) The complete conversion of OH to OTi in hdstwas confirmed by
the lack of vo_y with concomitant appearance of new bands assignable
(Bradley, D. C.; Mehrotra, R. C.; Gaur, D. Rletal Alkoxides Academic
Press: London, 1978) tay—t at ~640 cnt andvc-or at 1026 cmt* and a
~10 ppm downfield shift (from 155 and 157 in apohagb 166) indc (*3C
CPMAS) for C-OTi, characteristic of aryloxy titanium species (Mikami, K.;
Terada, M.; Nakai, TJ. Am. Chem. S0d.989 111, 1940-1941;199Q 112,
3949-3954).

(7) Characterized in a manner similar to that for Ti-hak € —9 ppm
for CHs—Al by 3C CPMAS) and also by volumetry for the methane evolved
in the preparationl( + 2AI(CHz); — 14 +2(AICH3) + 4CH,). Anal. Found:

C, 70.63; H, 4.54; Al, 11.1. Calcd for£H,004Al,: C, 70.89; H, 4.25; Al,
11.4.

(8) It is well-known that hexa- and tetracoordinated Al nuclei resonate at
~0 and~70 ppm, respectively, (e.g., Mar, D.; Gessner, W.; Behrens, H.;
Scheler, G.Chem. Phys. Lettl981 79, 59-62) and less symmetrically
coordinated nuclei give broader resonances due to enhanced quadrapole
interactions (e.g., Hayashi, S.; Ueda, T.; Hayamizu, K.; Akiba].EPhys.
Chem.1992 96, 10922-10928).
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Figure 1. (a)2’Al MAS NMR spectra at room temperature for Al-host,

(b) ethyl acetate adduct thereof, (c) and Al-host regenerated upon guest

removal. The chemical shifts are in reference to AlgRf in water.

The specific surface areas akg=r = 80 n¥/g for Ti-host and
240 ntlg for Al-host? Thus, they have a higher degree of
microporosity as compared with apohakt which is almost
nonporous Aser = 7 n?/g) and undergoes a phase change upon
formation of hydrogen-bonded hesjuest adducts. This may
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Figure 2. Time courses of the acrolein-1,3-cyclohexadiene Didlsler
reaction under nitrogen at 2% in the absence (a) and presence of
insoluble Ti-host1*=-2[('PrO)TiCI] (e, 1 mol %; b, 3 mol %; f, 6 mol
%), insoluble apohost (c, 3 mol %), or soluble’PrO)TiCl, (d, 3 mol

%) as a catalyst under conditions of acrolein/dien&/20; the amount
of catalyst is in reference to the limiting substrate acrolein. Ruefers

to the second run using Ti-host recovered from run b.

be why the present metalated hosts are also capable of reversiblghe product from the host caviti@sAl-host 14--2(AICH3) also
incorporation of hydrocarbon guests such as benzene and 1,3catalyzes the DielsAlder reactions in a similar manner &nd

cyclohexadiene (46 mol). Coadsorption of polar and nonpolar

endo/exo are<1 min and>99/1 for acrolein at 253C and 4.3 h

guests is also confirmed. When immersed in benzene, a 1:43nd~100/0 for ethyl acrylate at 66C).

acrolein adduct of Ti-host picks up2 mol of the former while
keeping the metal-coordinated polar guests and gives rise to
ternary adduct*~-2[(PrO)TiCl]-4(H,C=CHCHO)2(CsHe¢).> When
1,3-cyclohexadiene is used in place of benzene, a facile Biels
Alder reaction takes place. Most of the product remains inside
of Ti-host but is released upon addition of acrolein.

As suggested by the above observations, Ti-host catalyzes th
acrolein-1,3-cyclohexadiene Dieté\lder reaction. In Figure 2,
are shown the time courses of the reactions &2 the absence
(a, half-life ist = 500 h) and presence (3 mol % of the limiting
substrate acrolein) of Ti-hd$t(b, 7 = 5 min) or apohost (c; =
50 hy¥ as an insoluble catalyst oiPfO)TiCl, (d,7 =1 h) as a
soluble catalyst' Those for Ti-host at 1 mol % (&,= 10 min)
and 6 mol % (f,r = 2.5 min) are also shown. The characteristic
aspects are as follows: (1) The catalytic activity of Ti-host
14=-2[('PrO)TiCl] is much higher than those of its components,
i.e., not only apohosi but also the soluble Ti counterpart,
(PrO)TiCl,. (2) The Ti-host-catalyzed reaction is not only the
most efficient but also the most stereoselective; the endo/exo
product ratios are 90/10 (run a), 95/5 (c), 97/3 (d), ar®®/1 (b,

e, and f). (3) Ti-host as a solid catalyst can be readily recovered
by filtration or decantation followed by washing and, hence,
repeatedly used without undergoing a significant deactivation (run
b’ in Figure 2)1° (4) Ti-host (3 mol %) also catalyzes & 5.3

h) the highly stereoselective (endo/exo100/0) Diels-Alder
reaction of ethyl acrylate with 1,3-cyclohexadiene at60which
apohostl fails to catalyze because of the lack of desorption of

(9) Typical A values for zeolites are 56700 n¥/g.

(10) Actually, Ti-host can be in situ prepared by adding a calculated amount
(UTi = %») of apohostL to a solution of PrO}TiCl, in diene and quantitatively
recovered ad*~-2[('PrO)TiCIP after the catalytic reaction.

(11) Soluble T complexes derived from binaphthol ariérQ)TiCl, have
been used in asymmetric transformations: (a) Mikami, K.; Motoyama, Y.;
Terada, M.J. Am. Chem. Socl994 116, 2812-2820. (b) Terada, M.;
Matsumoto, Y.; Nakamura, Y.; Mikami, KI. Chem. Soc., Chem. Commun
1997 281-282. Also see references cited in ref 6.

In summary, soluble Lewis acid complexes can be immobilized

8y using a known hydrogen-bonded organic supporting network

as a microporous multiligand. The resulting metatganic solid
having potential internal cavities and vacant coordination ‘Sites
exhibits a mole-based turnover faster than its soluble counterpart
and is readily separated from the product, recovered as such, and

&eusable. For the conventional homogeneous catalytic systems,

product-catalyst separation is usually achieved only upon further
workup involving acid treatment followed by extraction of the
reaction mixture; this inevitably leaves organic as well as metal-
containing aqueous wastes.

The present metal-insertion or admixture strategy may be
applicable to various metal complexes and organic networks. The
use of solid catalysts may thus open the door to the construction
of waste-free, workup-free, and solvent-free molecular transfor-
mation processes which are friendly to the environment and
resource-saving. In addition, the present particular work suggests
a potential utility of such catalysts in fine organic synthesis, where
soluble metal complexes and organometallic derivatives have been
extensively used as either promotors or catalysts.
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